

by Gilbert Bruce Fargen 25 Feb 2018

© 2018 Gilbert Bruce Fargen

OBJECTIVES

The seventh principle calls on Unitarian-Universalists to affirm and promote:

"respect for the interdependent web of all existence of which we are a part."

This talk has two objectives:

- 1. to review how science describes this web,
- 2. to explore the <u>ethics</u> of respecting this web.

PRELIMINARIES:

WEB CONCEPTS

BASIC WEB CONCEPTS

Every web, including the interdependent web of existence, contains two or more entities.

Every web contains at least one relationship which relates two or more entities.

ENTITY RELATIONSHIP 1 ENTITY 2

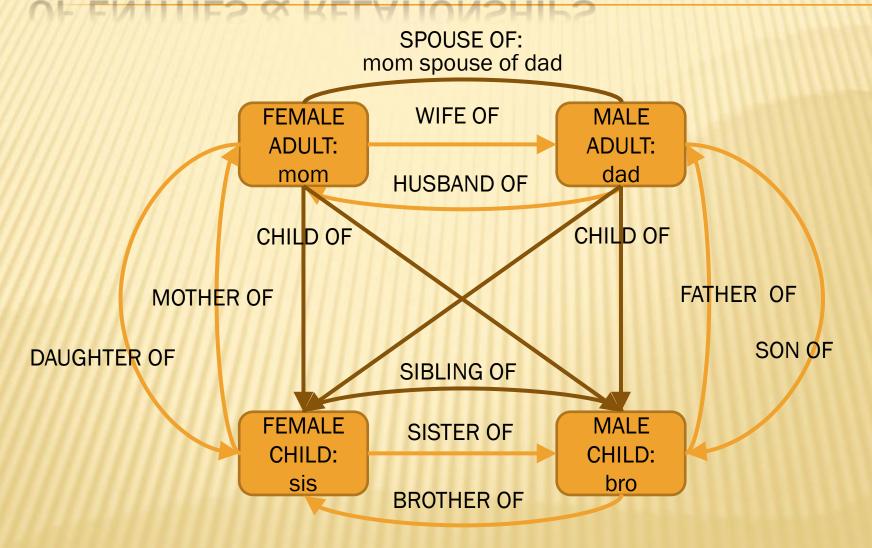
TYPES & TOKENS

Every entity and every relationship is a <u>token</u> of one or more <u>types</u>.

Example:

	TOKEN	TYPE
ENTITY	 Alberta British Columbia Manitoba	province
RELATIONSHIP	 Alberta <u>being east of</u> British Columbia Manitoba <u>being east of</u> Alberta 	being east of

WEB TYPES AND TOKENS


In addition to entities and relationships, webs can also have types.

- * The type of a web is fully defined
 - + by the types of entity tokens it contains and
 - + by the types of relationship tokens it contains.

EXAMPLES: WEB TYPES AND TOKENS

- * There can be numerous webs of the same type.
- * Each individual web is a token of the type.
- * Example: Ahuman family is a type of web.
- * Example: Each individual human family is a token of the human family type of web.

EXAMPLE: TYPES & TOKENS OF ENTITIES & RELATIONSHIPS

THE FOUNDATIONAL WEB

ATOMS & PROTONS, QUARKS & LEPTONS

- * At one time, science regarded <u>atoms</u> as the foundational particles of matter and recognized numerous types of atoms.
- Then, we discovered that atoms were actually made up of protons, neutrons and electrons and that the type of an atom was determined by the number of protons it contained.
- Now, we are told that protons and neutrons are made of even more fundamental particles called "quarks" but that electrons are still a fundamental particles of a type called "leptons".

FUNDAMENTAL FORCES & BOSONS

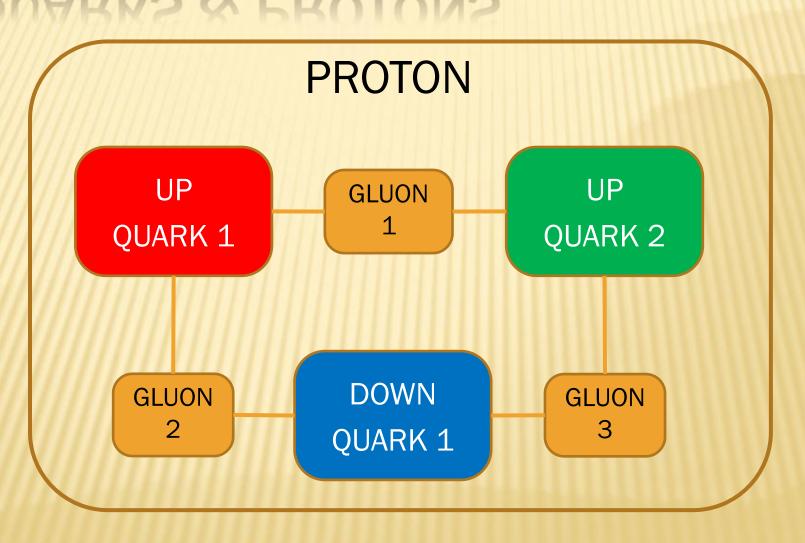
At one time it was thought that <u>four forces</u> governed interactions of the fundamental particles.

FORCES

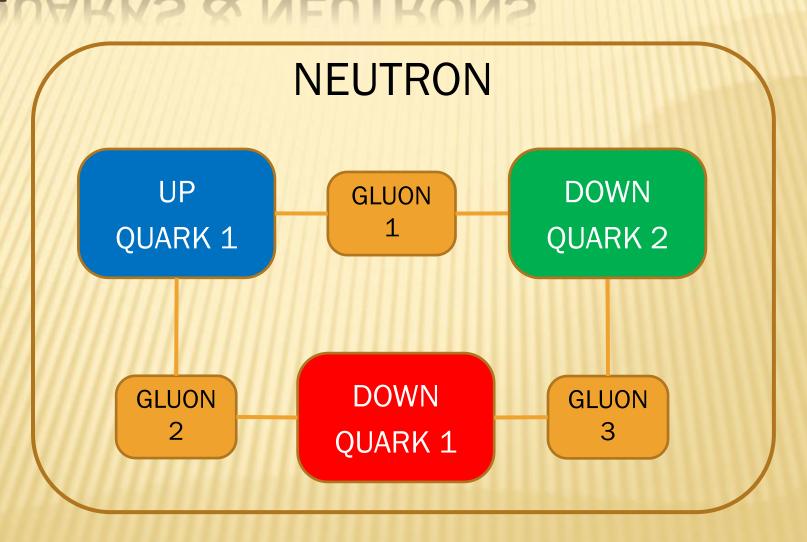
- Strong Nuclear
- Weak Nuclear
- Electromagnetic
- Gravitational

BOSONS

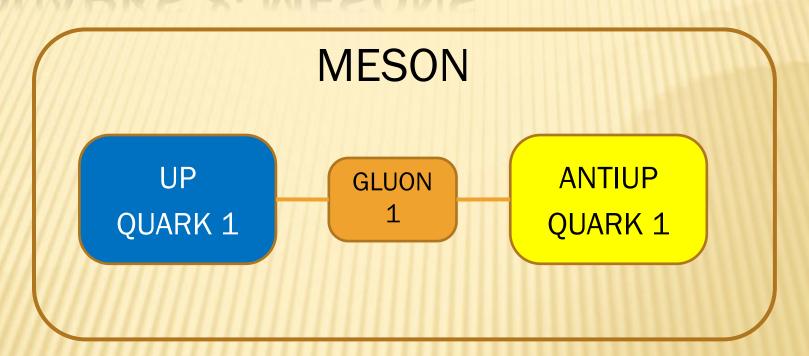
- Gluons, Mesons
- * W and Z bosons
- × Photons
- Gravitons

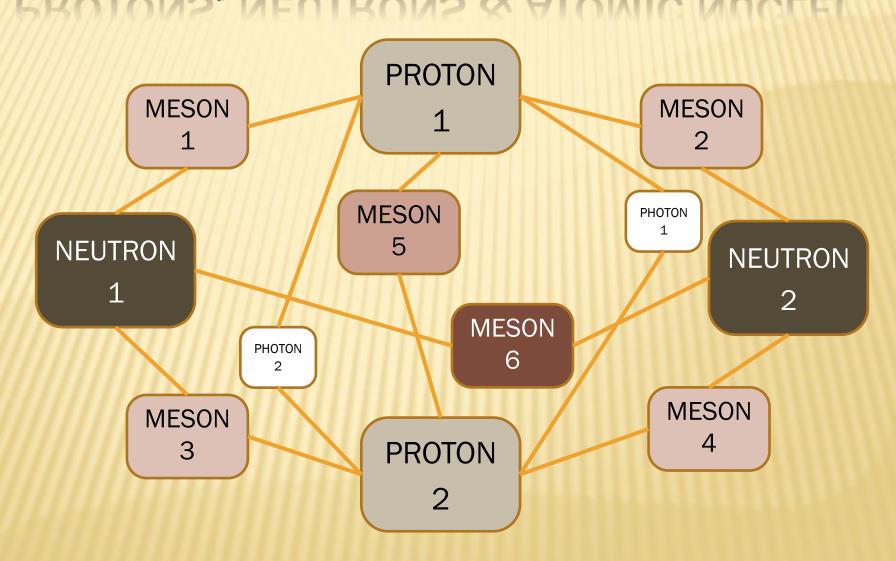

We now believe that the four forces are the result of quarks and leptons exchanging a type of particle called a <u>boson</u>.

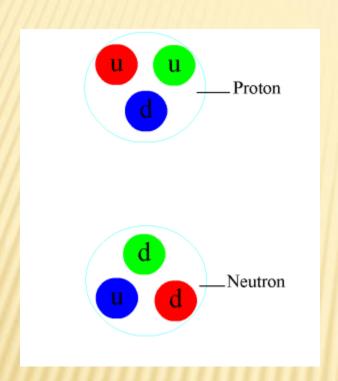
QUARKS



QUARK FLAVORS			
UP	CHARM	TOP	QUARKS
DOWN	STRANGE	BOTTOM	Quinno
ANTI UP	ANTI CHARM	ANTI TOP	
ANTI DOWN	ANTI STRANGE	ANTI BOTTOM	ANTIQUARKS


QUARKS & PROTONS


QUARKS & NEUTRONS


QUARKS & MESONS

PROTONS, NEUTRONS & ATOMIC NUCLEI

THE NEUTRON DANCE

Animation from the Wikipedia article on Nuclear Force

- Protons and neutrons are held together by <u>exchanging a pion</u> (a type of meson)
- Small circles are gluons
- During the exchange, the gluons change the quarks' color
- But the <u>color neutrality</u> of the proton and neutron is maintained

PART ONE: THE SCIENCE OF THE WEBS

SCIENCE

× physics

WEB

- x solar systems
- x second generation stars
- first generation stars
- protons and electrons
- × fermions &

(quarks & leptons)

bosons

(gluons, mesons, photons, gravitons)

SCIENCE

physics

WEB

planetary sciences × planetary systems

- solar systems
- second generation stars
- first generation stars
- protons and electrons
- fermions and bosons

SCIENCE

x chemistry

- planetary sciences
- physics

- x organic molecules
- × inorganic molecules
- planetary systems
- solar systems
- second generation stars
- first generation stars
- protons and electrons
- fermions and bosons

SCIENCE

× biology

- × chemistry
- planetary sciences
- × physics

- multicellular organisms
- × single cellular organisms
- organic replicators (life)
- organic molecules
- Inorganic molecules
- planetary systems
- solar systems
- second generation stars
- first generation stars
- protons and electrons
- * fermions and bosons

SCIENCE

physiology

- biology
- chemistry
- planetary sciences
- × physics

- sensory-motor knowers
- information processing organisms
- x differentiated cellular organisms
- multicellular organisms
- single cellular organisms
- organic replicators (life)
- organic molecules
- Inorganic molecules
- planetary systems
- solar systems
- second generation stars
- first generation stars
- protons and electrons
- fermions and bosons

SCIENCE

- × neuroscience
- physiology

biology

- chemistry
- planetary sciences
- × physics

- × sentients
- sensory-motor knowers
- information processing organisms
- differentiated cellular organisms
- multicellular organisms
- single cellular organisms
- organic replicators (life)
- organic molecules
- Inorganic molecules
- × planetary systems
- solar systems
- second generation stars
- first generation stars
- * protons and electrons
- fermions and bosons

SCIENCE

- psychology
- × neuroscience
- biology

- chemistry
- planetary sciences
- × physics

- x compassionates
- × sentients
- sensory-motor knowers
- information processing organisms
- differentiated cellular organisms
- × multicellular organisms
- single cellular organisms
- organic replicators (life)
- organic molecules
- × Inorganic molecules
- × planetary systems
- × solar systems
- second generation stars
- * first generation stars
- protons and electrons
- fermions and bosons

SCIENCE

anthropology

- psychology
- neuroscience
- biology

- chemistry
- planetary sciences
- × physics

WEB

× symbol & tool users

- compassionates
- × sentients
- sensory-motor knowers
- information processing organisms
- differentiated cellular organisms
- * multicellular organisms
- single cellular organisms
- organic replicators (life)
- × organic molecules
- Inorganic molecules
- planetary systems
- solar systems
 - second generation stars
- first generation stars
- × protons and electrons
- * fermions and bosons

SCIENCE

× social sciences

- anthropology
- psychology
- * neuroscience
- biology

- chemistry
- planetary sciences
- × physi

- organizations of symbol & tool users
- × symbol & tool users
- compassionates
- sentients
- sensory-motor knowers
- information processing organisms
- differentiated cellular organisms
- multicellular organisms
- single cellular organisms
- organic replicators (life)
- organic molecules
- × Inorganic molecules
- planetary systems
- solar systems
- second generation stars
- first generation stars
- protons and electrons
- fermions and bosons

RELATIONSHIPS BETWEEN LEVELS OF WEBS

The webs studied by the various sciences are related by <u>identifying</u>

a web at a lower level

with

an entity at the next higher level.

EXAMPLE 1: BASE WEBS

WEB	COMPOSED OF
GENE	MOLECULES (amino acids)
MOLECULE	ATOMS + PHOTONS
ATOM	NUCLEUS + ELECTRONS
NUCLEUS	PROTONS, NEU TRONS, MESONS
PROTON	QUARKS + GLUONS

EXAMPLE 2: MIDDLE WEBS

WEB	COMPOSED OF
ORGANISM	ORGANS
ORGAN	CELLS (differentiated)
CELL	CELL NUCLEUS + CELL WALL + CELL BODY + SYMBIONTS
CELL NUCLEUS	CHROMOSOMES
CHROMOSOME	GENES
GENE	MOLECULES (amino acids)

EXAMPLE 3: HIGHER WEBS

WEB	COMPOSED OF
SYMBOL + TOOL USER ORGANIZATIONS	SYMBOL+TOOL USERS + CO-ORDINATED REPRESENTATIONS AND MANIPULATIONS
SYMBOL + TOOL USER	COMPASSIONATE + ABSTRACT REPRESENTATIONS AND MANIPULATIONS
COMPASSIONATE	SENTIENT + REPRESENTATIONS OF OTHERS + COMPASSIONS
SENTIENT	KNOWER + INTERNAL REPRESENTATIONS + APPRECIATIONS
KNOWER	ORGANISM + EXTERNAL REPRESENTATIONS
ORGANISM	ORGANS

FINDING THE INTERDEPENDENT WEB OF EXISTENCE

THE WEB OF EXISTENCE, 1

A problem:

Given that science reveals

a layered set of webs,

which one of science's webs is

the interdependent

Web of Existence,

in the sense of the Seventh UU Principle?

THE WEB OF EXISTENCE, 2

- The children's version of the Seventh Principle identifies the <u>Web of Existence</u> with the <u>Web of Life</u>.
- Another option is to identify the <u>Web of Existence</u> with a web which unites all the other webs, a <u>Web of Webs.</u>

A Web of Webs treats <u>entities</u> in higher webs as <u>sets of entities</u> in a lower webs.

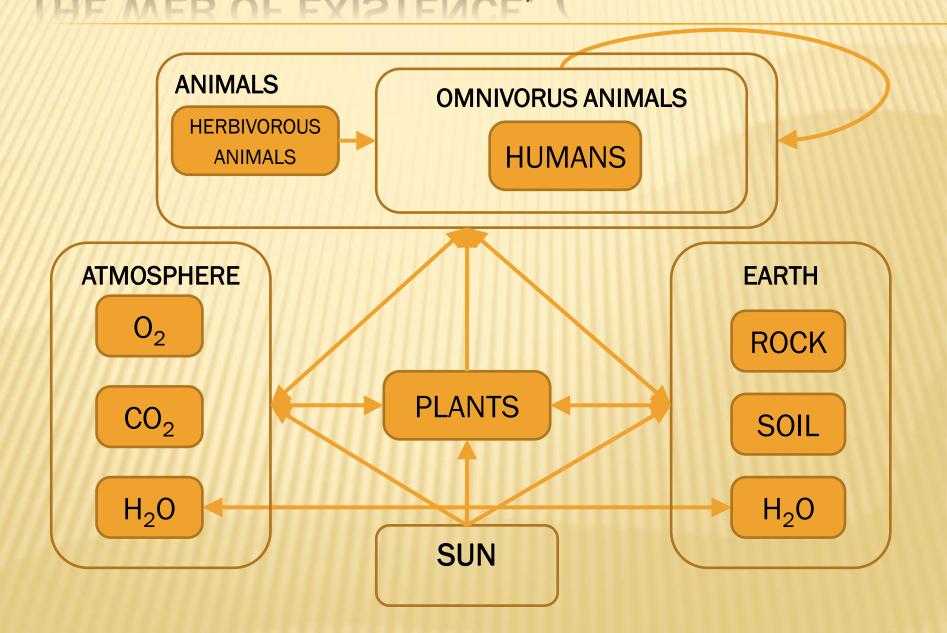
THE WEB OF EXISTENCE, 3

But identifying the Web of Existence with the Web of Webs faces another problem:

Where's the interdependence?

For the most part, lower webs are <u>independent</u> of upper webs

And upper webs are <u>dependent</u> on the lower webs.


- A classic case of interdependence is the relationship between <u>flowering plants</u> and <u>pollinating insects</u>
- But this interdependence is not general
 - not every pollinator can fertilize every flower
- Specific flowers may require specific pollinators
 & specific pollinators require specific flowers.

- * The relationship between **flowering plants and pollinating insects** is one of <u>mutually beneficial</u> interdependence. It is symbiotic.
- * The relationship between **prey and predator** is also one of <u>mutually beneficial</u> interdependence, <u>but unequally distributed</u> within each species and it is <u>not beneficial at all</u> to some individuals within the prey species.
- Another relationship which is interdependent is that between parasite and host, which is beneficial to the parasite but detrimental to the host.
- * Finally, there are relationships like that between humans and the climate which are interdependent but detrimental to both and others as well.

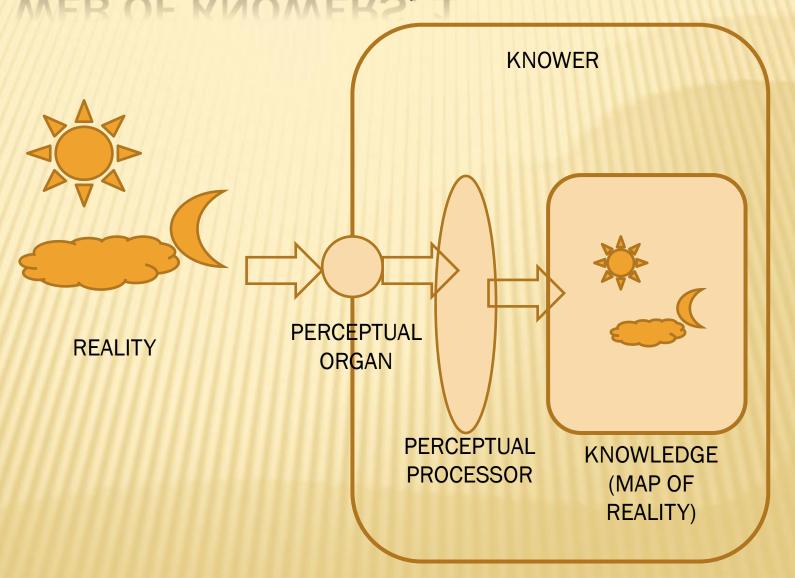
Interdependence

need not imply

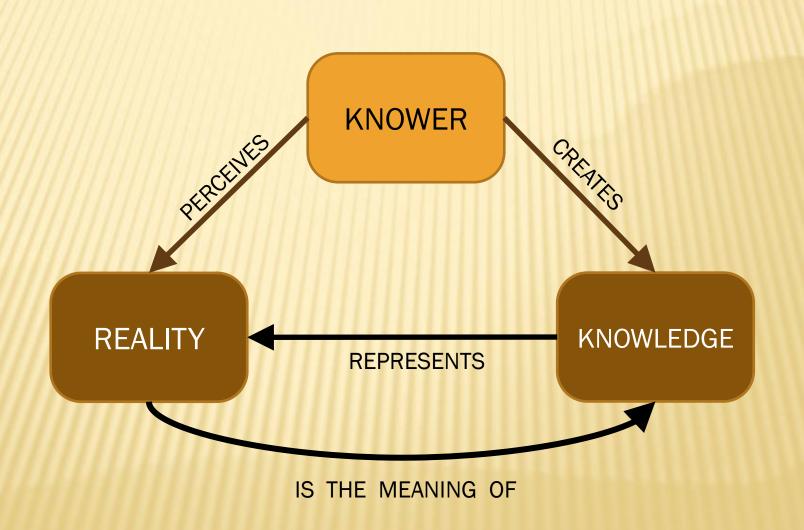
Mutual Beneficence

- This basic picture of the Web of Life and All that Sustains Life neglects important webs which exist above.
- * These other webs have an important feature which justifies their inclusion in the Interdependent Web.
- * These webs are the Webs of Intensionality.

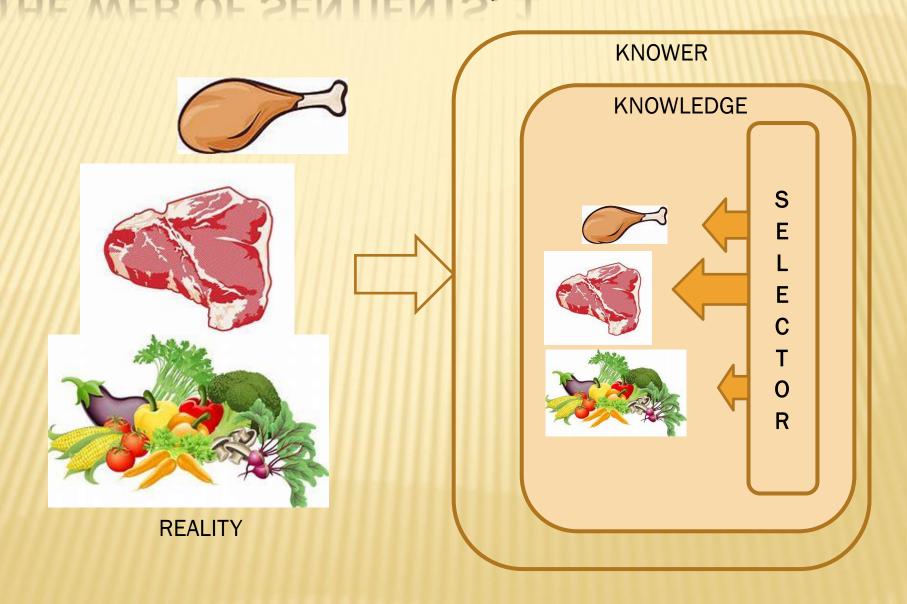
WEBS OF INTENSIONALITY

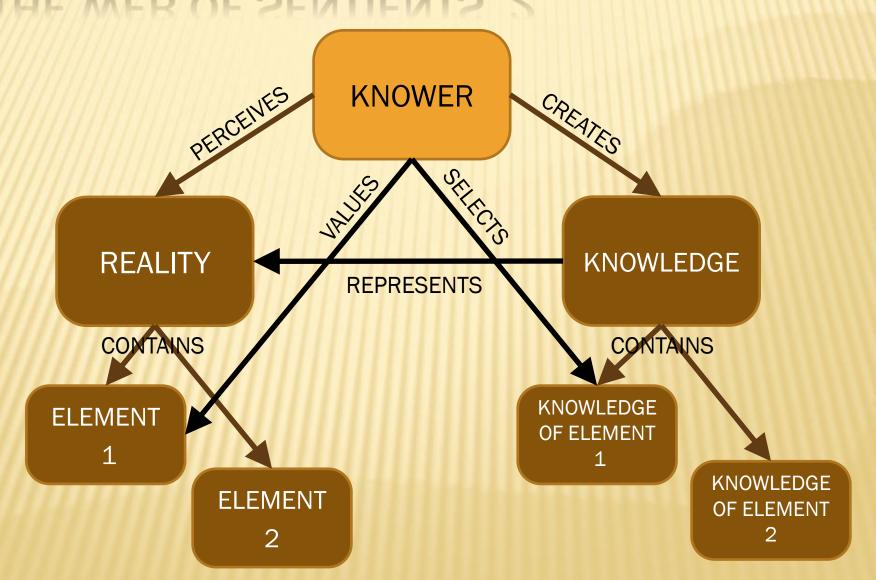

RELATIONSHIPS, EXTENSIONAL & INTENSIONAL

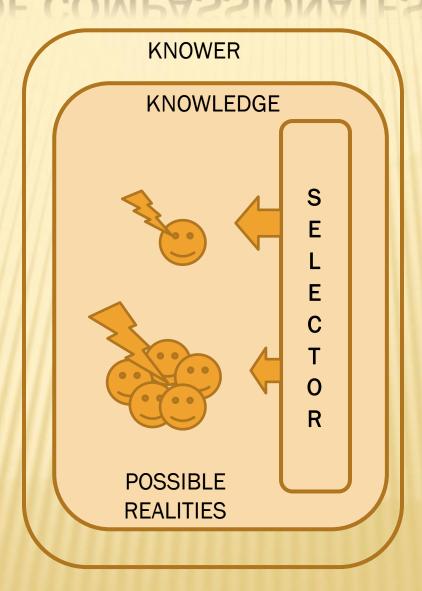
- In the lower webs, all relationships are <u>extensional</u>, that is, it is simply true or false that they exist.
- In the higher webs, some relationships are <u>intensional</u>, that is, they exist because they were *created by that* web's entities from a number of possibilities.
- Example: in the web of humans:
 - + the <u>biological parent</u> relationship is <u>extensional</u>, it is simply true or false that it exists.
 - + The <u>adoptive parent</u> relationship is <u>intensional</u>, it is created by realizing one possibility rather than another.

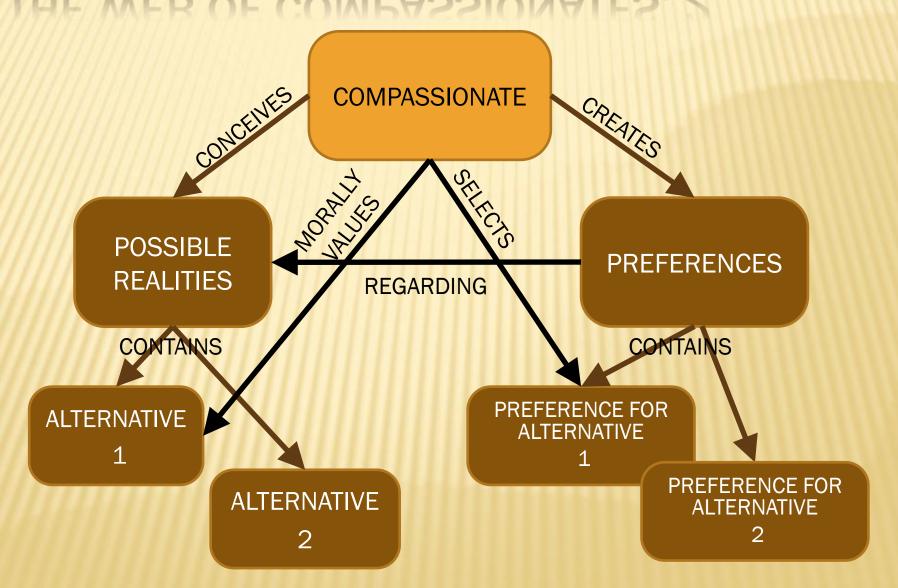

WEBS WITH INTENSIONAL RELATIONSHIPS

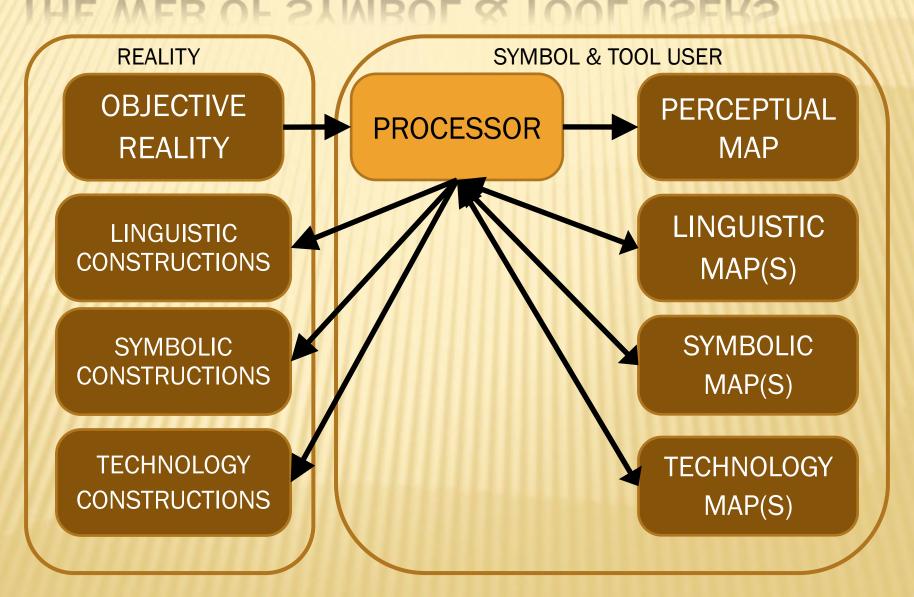
WEB	CREATES INTENSIONAL RELATIONSHIPS OF	
Symbol & Tool User Organizations	<u>Justice</u> , Civilization, Art, Music, Science, Philosophy & Religion	
Symbol & Tool Users	<u>Understanding</u> , Language, Storytelling , Explanatory Theories, Technology,	
Compassionates	Compassion, Moral Value, Sense of Others	
Sentience	Appreciation, Basic Value, Sense of Self	
Knowers	Perceptual <u>Knowledge</u> , Referential <u>Meaning</u> , Kinship Altruism	

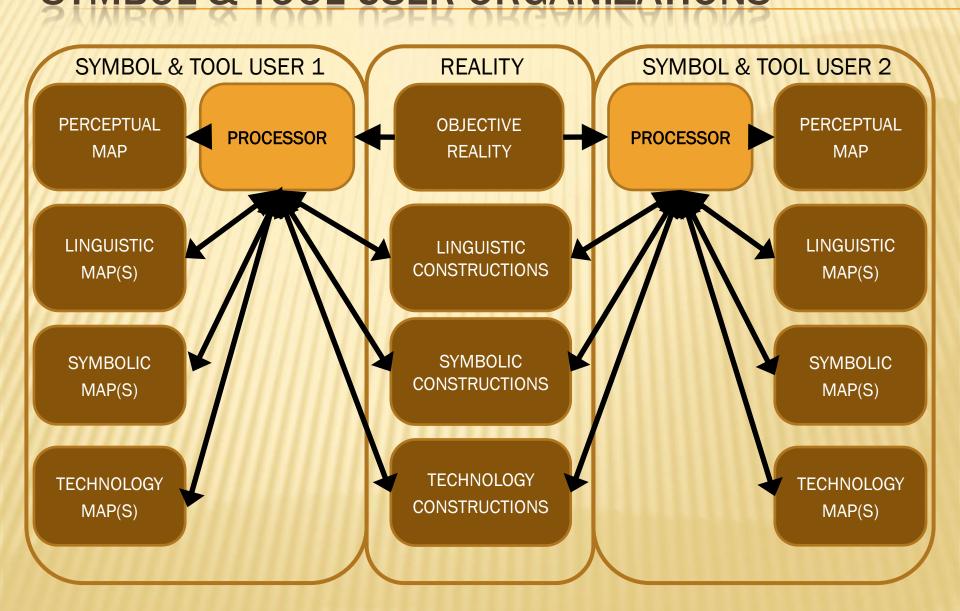

THE WEB OF KNOWERS, 1


THE WEB OF KNOWERS, 2


THE WEB OF SENTIENTS, 1


THE WEB OF SENTIENTS, 2


THE WEB OF COMPASSIONATES, 1


THE WEB OF COMPASSIONATES, 2

THE WEB OF SYMBOL & TOOL USERS

THE WEB OF SYMBOL & TOOL USER ORGANIZATIONS

PART TWO:

RESPECTING THE WEB

THE NATURE OF RESPECT FOR THE WEB

Respect for the web is an intensional relationship

between

on the giving side, us as individuals and us as a society and

on the receiving side, the web of existence as a unified whole

There needs to be both

Individual Respect for the Web

and

Social Respect for the Web.

COMPONENTS OF RESPECT FOR A WEB

		COMPONENT	FROM WEB OF
		ENVIRONMENTAL & SOCIAL JUSTICE FOR THE WEB	ORGANIZATIONS OF SYMBOL & TOOL USERS
		UNDERSTANDING OF THE WEB	SYMBOL & TOOL USERS
RESPECT		COMPASSION FOR THE WEB	COMPASSION
		APPRECIATION OF THE WEB	SENTIENCE
		KNOWLEDGE OF THE WEB	KNOWLEDGE

PROPERTIES OF WEBS

- Dynamic Type (static, dynamic token, dynamic type)
- Level (number of levels of webs of which it is composed, where quarks are at level 0)
- Extent (number of tokens of entities and relationships)
- Complexity (number of types of entities and relationships)
- Resilience (ability to replace lost entity and relationship tokens, time to recover)
- Evolvability (the capability to add new entity types and relationships, time to evolve)

OBLIGATION TO DO NO HARM

Do no harm to any web, by commission or omission,

unless such harm is required to help a higher web.

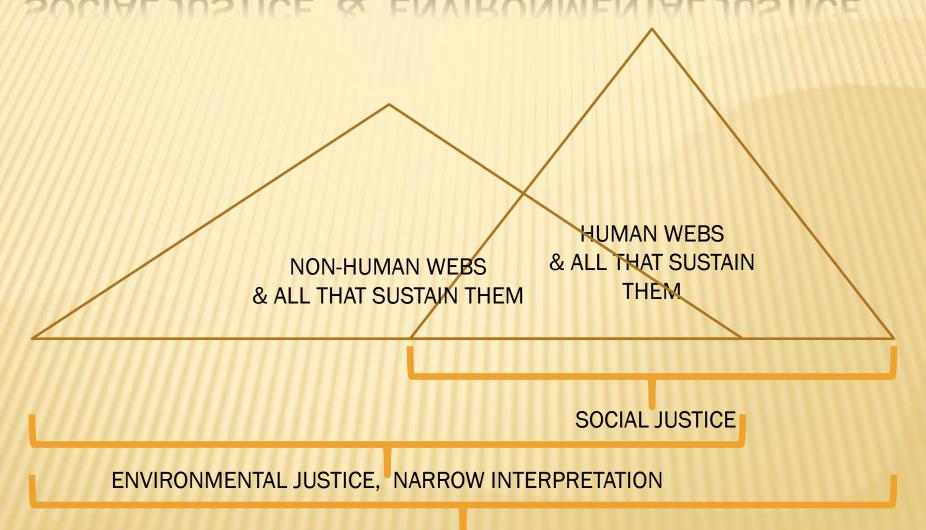
TO HARM A WEB

- Decrease its <u>extent</u> (destroy some of its tokens).
- Decrease its <u>complexity</u>, decrease its <u>diversity</u> (destroy some of its types).
- Decrease its <u>resilience</u> (increase the time it takes to recover its previous extent and complexity).
- Decrease its <u>evolvability</u> (increase the time it takes to add new types and relationships).

OBLIGATION TO HELP

Act to help all webs,

giving higher preference to higher webs.


TO HELP A WEB

- Increase its <u>extent</u> (enable addition of some of its tokens and/or their relationships).
- Increase its <u>complexity</u>, increase its diversity (enable addition of some of its types and/or their relationships).
- Increase its <u>resilience</u> (decrease the time it takes to recover its previous extent and complexity).
- Increase its <u>evolvability</u> (decrease the time it takes to add new types and relationships).

THE QUESTION OF JUSTICE

- If helping a web does no harm to another web, then there is no question of what to do.
- In most cases however, we need to choose between webs:
 - + either choose between helping one web or helping another, or
 - + choose to harm one web to help another.
- × Justice requires the choice be balanced.

SOCIAL JUSTICE & ENVIRONMENTAL JUSTICE

ENVIRONMENTAL JUSTICE, WIDE INTERPRETATION

SOCIAL JUSTICE & ENVIRONMENTAL JUSTICE

ENVIRONMENTAL JUSTICE

- Appreciation Based
- Token Blind
- Maximizes Survival
- Complexity trumps Extent
- Favors Extensionality
- Favors Types fostering Resilience & Evolvability
- Allocation Blind

SOCIAL JUSTICE

- Compassion Based
- Token Aware, top down
- Maximizes Happiness
- Complexity Blind
- Favors Intensionality
- Resilience & Evolvability Blind
- Allocation Aware

POSSIBLE SOLUTION

* Allocate effort between human and non-human webs based on *Environmental Justice*.

Within the human web, allocate effort based on Social Justice.

